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7.1. LOOKING AT THE BRAIN 

The human brain is a dull gray and glistening white tissue having the texture of 
stiff pudding. Under high magnification the brain looks like an intricrte three- 
dimensional maze, as shown in Fig. 7.l(a). Each component is being studied in 
painstaking detail, but despite our increasing knowledge of the brain's structure 
our ignorance of how the brain works remains almost complete. However, 
neuroscientists have an advantage that workers in Artificial Intelligence do not 
yet have: a working model and an existence proof that problems in perception 
and cognition have at least one solution. If we knew how to look and what to look 
for, we might be able to see in Fig. 7.l(a), for example, a part of an algorithm for 
some problem in visual perception. 

The fundamental design principles of a machine must be understood before its 
function can be deduced from its structure. For example, the piece of integrated 
circuit in Fig. 7.l(b) is a meaningless abstract design without knowing the 
principles of digital logic. Neuroanatomy is similarly meaningless without know- 
ing how the signals that carry meaningful information are transformed by each 
component. Quite possibly we do not yet know the signals in the brain that 
encode thought, thus making the physiological study of cognition nearly impos- 
sible. We do have some understanding of how sensory information and motor 
commands are encoded, and a similar form of coding is probably exploited for 
central functions as well. 

Peripheral sensory codes depend on labeled lines: The central nervous system 
"knows" where each input originates just' as a central telephone exchange 
"knows" the origin of each telephone line. Are neurons in the central nervous 
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FIG. 7.1. (a) Highly magnified view of a cross section through the visual cortex 
of a rat using an electron microscope. The vesicle-filled profiles are presynaptic 
terminals. Several synapses. characterized by a presynaptic accumulation of vesi- 
cles and a postsynaptic thickening, are visible (courtesy of Simon LeVay). (b) A 
16K Random Access Memory manufactured by MOSTEK. The magnification is 
about ten times less than in (a). Because silicon chips are essentially two- 
dimensional, the number of wires that can interconnect logical units in a large- 
scale device is severely limited. 

system similarly labeled; that is, does the response of a neuron "mean" the same 
thing and represent a fixed address for a particular piece of information? Primary 
sensory areas of the brain appear to respond to sensory input in this way. For 
example, a visual scene is represented in the primary visual cortex by the subset 
of neurons that respond to particular features in the scene (Hubel & Wiesel, 
1977). At higher levels of the nervous system, information may be represented 
by neurons that respond to a different set of primitive features-anes that are 
perhaps closer to the primitive components of perception. Are different percep- 
tual states at some high level represented by the activation of different popula- 
tions of neurons? The extreme possibility that small nonoverlapping populations 
represent percepts is called a localized representation, or sometimes a 
"grandmother cell" or "pontifical cell" theory (Barlow, 1972; Feldman, Chap- 
ter 2, this volume). The other extreme possibility that only large completely 
overlapping populations of neurons represent percepts is called a distributed 
representation. Both extremes are parallel models, but the essential information 
in one case is spatially separated and in the other case is spatially mixed. 

These possibilities could be tested by mapping the electrical activity of a large 
number of neurons during different perceptual states. Although this type of 
experiment is not feasible with current physiological techniques, an anatomical 
technique using a radioactively labeled sugar analog, ['4C]-2-deoxyglucose, has 
been used for qualitatively mapping functional activity in the brain with a resolu- 
$on of about 50 p (Des Rosiers, Sakurada, Jehle, Shinohara. Kennedy, & 
Sokoloff, 1978; Hubel, Wiesel & Stryker, 1978; Sokoloff, Reivich, Kennedy, 
Des Rosiers, Potlak, Pettigrew, Sakurada, & Shinohara, 1977). Recent im- 
provements in the technique now make it possible to measure the functional 
activity of single neurons with 1 p resolution (Sejnowski, Reingold, Kelley, & 
Gelperin, 1980). 

The implications of a distributed representation are explored in this chapter. 
Although different perceptual states are initially represented by overlapping 
populations of neurons, a new type of representation emerges, called a skeleton 
filter, which is intermediate between a localized representation and a distributed 
representation. 

7.2. LISTENING TO THE BRAIN 

Take a fine tungsten wire, etch its tip to about 1 p, slowly lower it through a 
small hole made in the back of a cat's skull, and amplify the microvolt potentials 
from the microelectrode. Many neurons in the brain produce a brief signal that 
sounds like a pop'when played through a loudspeaker. If the microelectrode is 
properly positioned in the cat's visual cortex, a burst of firing occurs whenever a 
bar of light moves in a particular direction at a particular position in the cat's 
visual field. The specificity of the response was a surprise to David Hubel and 
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Torsten Wiesel, who. first performed this experiment, and it is surprising today 
how much they subsequently learned about the architecture of the visual cortex 
by recording from one cell--out of billions-at a time. 

Although the average response of a neuron in the visual cortex from a dozen 
trials is a reasonably repeatable measurement, the firing pattern varies from trial 
to trial, as shown in Fig. 7.2. Stochastic variability is found not only in the 
cerebral cortex, but as well at every level of the nervous system, including the 
sensory receptors. One of the chief sources of noise in the brain occurs at 
synapses where a chemical neurotransmitter is used to signal between neurons. 

POST-STIMULUS TIME HISTOGRAM 

Time in Millistconds 

FIG. 7.2. Extracellulv mcordings from a single neuron in cat visual cortex. This 
neuron responded best to a slit of light obliquely oriented in a particular part of the 
visual field. Twelve successive responses of the neuron to 50 msec exposures of 
light are shown above, and the average response for 20 trials is shown below. 
Although the pattern of firing varied from trial to trial (and some parts of the 
response drop out entirely, such as in trials 5 ,  10, and 1 I), the average over the 
ensemble of trials, called the poststimulus time histogram, is a repeatable mea- 
surement (Momll. 1972). 
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The neurotransmitter is stored in small packets called vesicles, visible in Fig. 
7.1(a), and released from the presynaptic terminal in discrete units. For example, 
at the junction between a motor neuron and muscle in the frog, approximately 
300 vesicles are released with each synaptic activation. A statistical variation of 
about 17 vesicles, or 6 percent of the total, can be expected during a normal 
activation of the synapse. Many central synapses are believed to release fewer 
vesicles and consequently have greater variation. Even in the absence of activa- 
tion vesicles are released spontaneously, producing miniature synaptic poten- 
tials. 

Quantal fluctuations at synapses is just one of several sources of noise in the 
nervous system. How is the brain able to function reliably with so much intrinsic 
variability? Perhaps the variability is not as serious as it appears (Bullock, 1970), 
or perhaps redundancy allows a reliable response from a population of neurons 
(Cowan, 1973); perhaps too we are asking the wrong question, being misled by 
the digital computer as a model of reliability. Could the apparent variability in 
the response of single neurons provide us with a clue to a basic design principle 
of the nervous system? 

Let us take a closer look at the data in Fig. 7.2. By concentrating on the 
response of the neuron to the stimulus, we have overlooked another interesting 
feature. The neuron is active even before the stimulus and maintains an appar- 
ently random background firing. This so-called spontaneous activity is common 
in the nervous system although the average background firing rate varies from 
n'euron to neuron. In the retina, for example, ganglion cells, which send signals 
from the eye to the brain, have spontaneous activity in complete darkness, which 
may increase, decrease, or remain unchanged when the retina is exposed to a 
steady background illumination. 

Spontaneous activity is generally regarded as a bias against which inhibitory 
as well as excitatory signals can be imposed. Because an impulse-producing 
neuron has a threshold below which it can transmit no signal or information, a 
neuron is most sensitive to input changes when maintained near threshold. If a 
neuron is too far above threshold, then the signal gets swamped by the back- 
ground. Threshold is, of course, an unstable region, so the price of high sensitiv- 
ity is high susceptibility to noise. The high levels of spontaneous activity in the 
brain and the apparent variability in the response of single neurons arc indications 
that many neurons operate near threshold much of the time. 

Although the large-scale electrical activity of the brain was explored long 
before single-cell recording was perfected, relatively little has been established 
about brain mechanisms from gross recordings. One qualitative feature of EEG 
recordings, however, is so common that its implications are sometimes over- 
looked: Widespread rhythms occur throughout the cerebral cortex and subcortical 
structures with frequencies between 5-100 Hz. The fact that any signal survives 
averaging over millions of sources, is coherent over large areas of the brain, and 
changes with the behavioral state of the animal strongly suggests significant 



temporal synchronization and spatial correlation among the sources of the EEG, 
one of which is believed to be the potentials generated at synapses. The possibil- 
ity that synaptic events are correlated and synchronized is at present beyond the 
limits of experimental verification, but its consequences are worth exploring. 

These three features-stochastic variability, spontaneous activity, and corre- 
lated electrical events-lead to a view of the brain that is probabilistic rather than 
deterministic, inherently distributed rather than local, and dynamic rather than 
static. Unfortunately, our experience with probablistic, distributed, dynamic sys- 
tems is limited. Even simple examples and models would help us grasp the 
brain's complexity. 

7.3. SIMPLIFYING THE BRAIN 

A successful model in physics is often a caricature, extracting only a few essen- 
tial features from a complex phenomenon but allowing these to be studied with 
clarity and precision. For example, the two-dimensional Ising model of the 
ferromagnetic phase transition, although unrealistic, is nonetheless important 
because it has an exact analytic solution and demonstrates a phase transition 
qualitatively similar to experimental measurements. Could a similar approach be 
useful in studying the brain? A simple but effective model of the brain does not 
yet exist, in part because its essential design features have not yet been identified. 
Nevertheless the strengths and limitations of simple models based on our present 
knowledge should be carefully examined. New ideas are more easily evaluated in 
comparison with already well-understood if inadequate models. 

Consider a neuron, or some part of it, as a processing unit with several inputs 
and an output. In some models the processing is assumed to be linear: The output 
of each unit is proportional to the sum of its inputs. However, if a processing unit 
has a threshold or any other departure from proportionality, then the model is 
nonlinear. The class of all linear models is mathematically well understood, but 
each nonlinear model requires a difficult individual analysis. Linear models, 
such as those discussed by James Anderson and Geoffrey Hinton (Chapter 1, this 
volume) and Teuvo Kohonen. Pekka Lehtio and Erkki Oja (Chapter 4, this vol- 
ume) are useful for analyzing distributed properties of general networks. In . 
nonlinear models localized computations must be studied in specific networks, 
such as the model of stereopsis by David Marr and Tomaso Poggio (1976) and 
the model of visual cortex by George Ermentrout and Jack Cowan (1979). 
Geoffrey Hinton (Chapter 6, this volume) demonstrates a nonlinear model of 
associative memory. 

None of the models mentioned thus far explicitly takes into account the 
variability and randomness_observed in the nervous system. A new approach is 
required based on probabilistic rather than deterministic mathematics. Fortu- 
nately, powerful tools from probability theory are available and have been 
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applied to a wide variety of problems in control and communication by electrical 
engineers. A simple probabilistic model of interacting neurons is presented in 
this section that provides an unexpected unification of the linear and nonlinear 
models. 

A Simple Nonlinear Model 

A cell maintains ionic gradients across its surface, which produce a potential. 
difference between the outside and the inside of the cell. An incoming signal at a 

1 synapse, by altering the ionic conductance of the membrane, can change the 
membrane potential. A simple model for asingle passive neuron, which to a first 
approximation behaves like a leaky capacitor, is given by 

I 

i 
where c$ (t) is the membrane potential at time t and 7) (t) is a single input with 
coupling strength B. The left side of Eq. (7-1) provides temporal integration of 
the input with a time constant T. An excitatory input produces a sudden increase 

i in the membrane potential, which then exponentially decays. The general solu- 

i 
tion of Eq. (7-1) for an arbitrary time-varying input is 

A generalization of this linear model to a linearly interacting population of 
N neurons with membrane potentials 4,, +,, . . . , 4, and M inputs T,, qz, . . . , 8, 
is given by 

where Kab is the strength of coupling from the bth neuron to the ath neuron, and 
B,, is the strength of coupling between the cth input and the ath neuron. The gen- 
eral solution of this model is: 

where T (t  - r') is the impulse response and depends only on K. The network of 
neurons behaves like a multidimensional linear filter of the type used by electri- 
cal engineers to filter signals from noise. The network is especially sensitive to 
inputs with particular frequencies, given by the eigenvalues of K, and to particu- 
lar input patterns, given by the eigenvectors of K.  

The completeness with which the linear model can be analyzed is of great 
advantage when applying it to concrete cases. For example. Halden Hartline and 
Floyd Ratliff in 1957 using a linear model with lateral inhibition were able to 



successfully predict the response of the Limulus lateral eye to steady-state pat- 
terns of light. More recently, Bruce Knight Jr., Fredrick Dodge Jr., and their 
colleagues have extended the model to predict the response of the Lirnulus retina 
to arbitrary time-varying illumination, thus making it the best-understood piece 
of nervous tissue. Details of the Lirndlcs model can be found in a review 
(Knight, 1974) and a volume of collected papers (Ratliff, 1974). 

A Simple Nonlinear Model 

Signals propagated down the thin dendrites of neurons exponentially decrement 
with a typical length constant of 2 5 0 ~ .  Long-distance communication is accom- 
plished with active regenerative channels in the membrane that produce a brief 
all-or-none impulse, the action potential. Above threshold the rate of impulse 
firing increases monotonically with input and saturates at some maximum, as 
shown in Fig. 7.3. Some general qualitative properties of nonlinear models are 
already found in a single neuron which synapses onto itself. If the average effect 
of impulses at the synapse is assumed to be proportional to the firing rate, then 
the steady-state membrane potential of the neuron should satisfy 

where q is an external input, B is the coupling strength of the input, K is the 
coupling strength of the neuron with itself, and p (4) is the firing rate of the 
neuron, as shown in Fig. 7.3. The dependent variable in Eq. (7-5) is (6, the 
effective membrane potential, defined as the membrane potential that the neuron 
would have in the absence of impulses. Unlike the linear model, for which there 
is a unique solution for any input, the nonlinear model can have more than one 
steady-state solution to a single input, as shown in Fig. 7.4. The past history of 
the neuron determines which of the multiple states is obtained. As the input 
slowly changes, new solutions may appear and old ones disappear: The critical 
input at which a transition between solution branches occurs is called a bifurca- 
tion. (The nonlinear one-neuron model is by coincidence formally identical to the 
Curie-Weiss mean-field theory of magnetism, with 4 playing the role of mag- 
netization and 7) identified with the externally applied magnetic field.) 

The number of multiple states and the complexity of transitions between them 
increases with the number of interacting neurons. A nonlinear model for N 
neurons with membrane potentials 4 4 s, . . . ,+ N and M inputs q q , , . . . , q M 

is given by 

where B,, is the coupling strength from the cth input to the ath neuron and Kab 
is the coupling strength between the bth neuron and the ath neuron. Note that 
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Membrane potential 4 
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FIG. 7.3. (a) The firing rate, p (+), as a function of the effective membrane 
potential C#J for a typical neuron. (b) The average firing Fte R (I$), defined in Eq. 
(7-8), as a function of the average membrane potentia! 4 holding all higher-order 
moments of 4 fixed. (c) The partial derivative of R (4 )  with respect to 4, which 
appears in Eq. (7-10). 

the only difference between the linear model in Eq. (7-3) and the nonlinear model 
in Eq. (7-6) occurs in the nonlinear transduction, p (4). For an impulse- 
producing neuron, the transduction between its input and output has a sigmoidal 
shape, as in Fig. 7.3, but in general the transduction can be an arbitrary nonlinear 
function. The model then applies equally well to neurons that do not produce 
impulses and to parts of neurons that are functionally independent processers 
(Shepherd, 1978). 

Multiple perceptual states evoked by a single stimulus are common in the 
visual system, particularly in the perception of depth. A simple example is an 
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FIG. 7.4. Graphic solution of  the nonlinear one-neuron model, Eq. (7-5). The 
intersection of the straight line I#J - B q (shown for two different values of the input 
q) and the sigmoidal p (4) arc solutions of the model. For input q, there is a 
unique solution, but for the input q there are three solutions of which the middle 
is unstable. 

outline of a box, called the Necker cube, which can be seen in two stable 
three-dimensional configurations. Bela Julesz (1974) has emphasized that the 
properties of binocular depth perception, such as a sharp transitions and hys- 
teresis between stable states, are characteristic of some nonlinear systems. David 
Marr and Tomaso Poggio (1976) have demonstrated a nonlinear model similar in 
form to Eq (7-6) that can detect depth in random dot stereograms. A nonlinear 
model of the visual cortex has been studied by George Ermentrout and Jack 
Cowan (1979) who found that the symmetries of solutions near a bifurcation 
point resemble the visual patterns reporttd by subjects during drug-induced 
visual hallucinations. The nonlinear model in Eq. (7-6) has a rich mathematical 
structure that we are only beginning to understand. 

A Simple Probabilistic Model 

The response of a neuron is the visual cortex to a pattern of light on the retina 
varies from trial to trial despite efforts to control experimental conditions strictly. 
By averaging the response over a number of trials, the variability in the response 
not related to the stimulus is reduced. The counterpart of experimental averaging 
in probability theory is called the ensemble average. Rather than model an input, 
for example, as a single function of time, an ensemble of inputs is chosen, the 
members of the ensemble differing from one another by random variations. The 
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solution of an equation for an ensemble of inputs is a corresponding ensemble of 
solutions. A great deal of information can be obtained from the ensemble in 
addition to the average solution, such as the average square variation or variance 
from the average. The average over an ensemble should not be confused with the 
average over time although under certain conditions the two may agree. 

The nonlinear model in Eq. (7-6) can be made probabilistic by including noise 
with the inputs on the right side. Corresponding to an ensemble of inputs, each 
with a different random noise component, there is an ensemble of membrane 
potential responses derived from Eq. (7-6). Define the ensemble average of the 
membrane potential as 

where E, the ensemble average or expectation operator, takes all the membrane 
potentials in the ensemble at a particular time and produces a single function, the 
average membrane potential 4, ( r ) .  Similarly, the ensemble average firing rate 
for an impulse-producing neuron is defined as 

The ensemble average firing rate corresponds technically to the limit of the 
experimental poststimulus time histogram for an infinite number of trials. 

A probabilistic analysis of the nonlinear model has been given elsewhere 
(Sejnowski, 1976b, 1977b). The strategy in the analysis is to set up a hierar- 
chy of equations governing the statistical moments and to make reasonable 
simplifying assumptions to study each tier in the hierarchy. Although the 
equations in the hierarchy are coupled, each tier can, to some extent, be analyzed 
separately. 

The lowest tier deals with first-order moments: the averages of single var- 
iables. The average membrane potentials satisfy an equation similar in form to 
the model itself, with p b (4 g) replaced by Rb (4 b), a somewhat smoother non- 
linear function as shown in Fig. 7.3. The properties of the deterministic model 
in Eq. (7-6), which have already been discussed, hold as well for the equation 
that governs the average membrane potentials. 

The second tier of the statistical hierarchy concerns second-order moments: 
the averages of squared variables and products of two variables. The average 
firing rate on the first tier is known to cany sensory information to the central 
nervous system and motor commands to muscles. Relatively little experimental 
effort has been devoted to measuring second-order moments, such as the var- 
iance of the firing rate, or correlations between membrane potentials, so it is not 
clear what information, if any, is carried on the second tier. An analysis of the 
second tier is nonetheless important for two reasons: First, the variances of the 
membrane potentials feed back to affect the first-order equations; and second, it 
is worth knowing what to Iook for if the nervous system does make use of 
higher-order moments. 



Correlations between the spike trains of nearby neurons have been measured 
throughout the brain (e.g., retina: Rodieck , 1967; Mastronarde (in press); lateral 
geniculate nucleus: Stevens & Gerstein, 1976; cerebellum: Bell & Kawasaki, 
1972; auditory cortex: Dickson & Gerstein, 1974). Relatively few experiments 
have been designed to measure changes in correlations in response to sensory 
stimulation. One intriguing example of stimulus-dependent correlations between 
two neurons in visual cortex is shown in Fig. 7.5. Because the membrane 
potential in a neuron is often below the spiking threshold, correlations between 

Unit 5 0 - 3  f rom unit 5 0 - 2  

FIG. 7.5. Cross-interval histograms of impulse firing from two simultaneously 
recorded neurons in visual cortex of a cat. Each stimulus bar was 2" wide at the 
cat's eye and the pattern of bars (shown below each histogram) was moved 
sinusoidally through 20" every 6 sec in the direction indicated by the arrows. The 
histogram was computed by measuring the time difference from every impulse in 
one train to the nearest preceding and succeeding impulse of the second train. If 
the impulses in the two neurons were occurring independently, the histogram 
should agree with the solid line. The left histogram agrees well with the control 
calculation, but the right histogram shows a series of peaks at approximately 3, 11, 
and 22 msec, indicatihg that one neuron tended to follow the other with those 
intervals. Thus the correlations between the two neurons depended on the 
stimulus. (Gerstein, 1970) 
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membrane potentials should be at least as prominent as correlations between 
spike trains. 

A second-order correlation that has been normalized to remove the influence 
of first-order averages is called a covariance and is defined as 

The covariance is positive when the two membrane potentials fluctuate together 
more often than by chance, negative when they fluctuate oppositely more often 
than by chance, and zero when they are completely independent. 

A neuron in cerebral cortex, such as the pyramidal cell in Fig. 7.6, continually 
receives an extremely large number of synaptic events along thousands of inputs. 
By the central limit theorem in probability theory, the sum of a large number of 
independent random signals has an approximately Gaussian distribution. Hence 

FIG. 7.6. Pyramidal cell in visual cortex of the cat. The cell was impaled with an 
intracellular electrode, and after its response to visual stimuli was determined, an 
enzyme, horseradish peroxidase, was injected into the cell. The neuron's axonal 
tree (thin processes) was as extensive as its dendritic tree (thick processes). (Gil- 
bert & Wiesel, 1979) 
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it is reasonable to assume that the membrane potential of a typical neuron in 
cerebral cortex is Gaussian, an assumption that can be checked experimentally. 
This assumption can be rigorously proved as a limit theorem in some related 
dynamical systems (Stuart Geman, unpublished). An unexpected simplification 
occurs in the analysis of the covariance if the membrane potentials are Gaussian: 
Although the model is highly nonlinear, the covariance between membrane po- 
tentials satisfies a linear equation identical in form to Eq. (7-3). However, the 
coupling strength in the equation for the covariance is not Kab but 

The multiplicative factor in the effective coupling strength Kib  has a simple 
intuitive explanation. As shown in Fig. 7.3, this factor is small when the average 
membrane potential is far below or far above threshold and is largest when the 
average membrane potential is near threshold. The covariance is a signal con- 
tained in the fluctuations of the membrane potential: The neuron will not transmit 
information in the fluctuations if the membrane potential is below threshold or if 
the neuron is saturated above threshold but will transmit information in the 
fluctuations if the neuron is poised near threshold. As a consequence, only a 
skeleton network of neurons near threshold significantly affects the covariance. 
The processing of covariance is linear even for large fluctuations as long as the 
Gaussian assumption remains valid. 

The probabilistic analysis summarized here unifies two classes of models with 
very different character. On the first tier, the average membrane potentials are 
governed by a nonlinear equation identical in form to those in the nonlinear class, 
Eq. (7-6). On the second tier, the covariance between membrane potentials 
satisfies a linear equation, Eq. (7-4). The coupling between the nonlinear and 
linear equations suggests a novel and flexible way to control the processing, 
storage, and retrieval of distributed information. 

7.4. MODELING MEMORY 

Models of memory are uncomfortably abstract: first, because cognitive process- 
ing is several stages removed from the physical representation of sensory infor- 
mation; and second, because no one knows where or how thinking takes place. 
What then is the value of modeling an unidentified brain area that processes 
undetermined information? There is, perhaps, something to be learned about the 
adequacy of the model for studying qualitative properties of the functioning 
brain. 

The best-studied model of associative memory is the linear matrix model 
(Anderson, 1970; Kohonen, 1972; Steinbuch, 196 1). In the simplest example, 

the interactions between neurons in Eq. (7-3) are ignored and only static inputs 
are studied. The output of a neuron, 4,, then satisfies 

where the Bab are the coupling strengths of the branching inputs 11,. How should 
the Bab be chosen so that a specific input pattern will produce a desired output 
pattern? What happens as we increase the number of paired associations? Is there 
a simple algorithm for computing the optimal B,,? All of these questions have 
precise answers, as discussed by Kohonen et. al. (Chapter 4, this volume). The 
same techniques can be applied to the static solutions of the linear model in Eq. 
(7-3), which includes interactions, 

where the coupling strengths between neurons, Knb,  are altered to store input- 
output associations rather than Bab. A review of this model, including useful 
demonstrations, is given by Kohonen (1977). 

The matrix model resembles memory in the same way that a toy glider 
resombles a bird. It does fly, in a rigid sort of way, but it lacks dynamics and 
grace. The input and output vectors in the matrix model are purely spatial, but as 
we know from common experience, associations have a temporal flow. Fur- 
thermore, associations depend overwhelmingly on context, which is entirely 
missing from the model. Can the matrix model be suitably generalized to over- 
come these shortcomings? In the case of dynamics the answer is yes, as shown 
shortly. No linear model, however, can ever be constructed to include context or 
contingencies: Like a toy glider a linear model always "flies" in a straight line. 

Time 

Most of us have a reasonably good memory for temporal sequences. Given the 
first few bars of a familiar tune, we can usually identify, if not reproduce, the rest 
of the tune. Christopher Longuet-Higgins (1968) proposed a model of temporal 
memory that he called the holophone in analogy with the distributed storage of 
spatial information in the holograph. The holophone can record temporal associa- 
tions to a given input and respond with the associated signal whenever the input 
reoccurs. The original model of the holophone suggested by Longuet-Higgins 
involved banks of filters and variable amplifiers, that is, a realization in the 
frequency domain. Because the holophone is a linear filter whose output is of the 
form given by Eq. (7-4), the linear model in Eq. (7-3) is an equivalent state- 
variable realization of the holophone if only a single input and a single output are 



condidered. David Willshaw (Chapter 3, this volume) discusses extensions of the 
original holophone model and some of its limitations. 

The time-dependent linear model, by virtue of the first term in Eq. (7-3), adds 
a rich temporal dimension to the static model in Eq. (7-1 1). Moreover, the 
analytic solution is explicitly known: The filter matrix in Eq. (7-4) has the form 

where A,, and OJ,, are derived, respectively, from the real and imaginary parts of 
the eigenvalues for the coupling matrix K, and P ( 1 1 ,  k) are a set of matrices 
doubly indexed by (n, k) and derived from the eigenvectors of K. 

The filter matrix T (1) is the response of the model to a sudden burst of action 
potentials along the inputs. If for convenience we assume that the inputs do not 
branch (B is diagonal), then by Eq. (7-4) the response of the time-dependent 
model is 

where qb is proportional to the number of action potentials along the hth input. 
Thus the membrane potential of each neuron is the sum of many exponentially 
damped, sinusoidally varying components indexed by n. However, the envolope 
of the kth term in the second summation has a peak that appears later as k 
increases. Each term has a separate matrix P (n, k), that transforms the input into 
a different spatial output, and these successively unfold in time. Rather than give 
rise to a single output as in the case of the static model, a single input in the 
dynamic model produces a doubly indexed set of associated outputs, one set 
indexing the frequency spectrum and the second set indexing the sequence in 
time. Further details about the output pattern are given elsewhere (Sejnowski, 
1976b). 

Synaptic Plasticity 

The physical basis of learning and memory is unknown. Alteration in the 
strengths of synapses between neurons has been shown to underlie habituation of 
a simple reflex in Aplysia, a marine mollusk, and similar mechanisms may 
underlie more complex forms of learning (Kandel, 1976). The matrix model and 
filter model of memory predict the conditions under which synaptic strengths 
should change in order to store new associations optimally (Kohonen, 1978; 
Sejnowski, 1977a). New experimental techniques are needed to test these predic- 
tions in the vertebrate central nervous system. 

One of the best-studied areas of the brain is the cerebellum, an area that 
receives inputs from both motor and sensory systems and is intimately involved 
in motor coordination. Experiments on the vestibulo-ocular reflex indicate that 
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the cerebellum may be involved in motor learning (Ito, 1975; Robinson, 1976). 
Following the suggestions of Brindley (1964) and Szentagothai (1968). Man 
(1969) and Albus (1971) have proposed detailed theories for associative motor 
learning in the cerebellum that predict plasticity for synapses between parallel 
fibers and Purkinje cells ((Fig. 7.7). According to Man (1969) the synapses 
should be "facilitated by the conjunction of presynaptic and climbing fiber (or 
postsynaptic) activity". Some conjunctions, however, take place purely by 
chance; because accidental coincidences are unrelated to an animals's experi- 
ence, they can have little or no adaptive value. Moreover, unless means exist for 
weakening the plastic synapse, continual random coincidences inexorably push it 
to maximum strength. A pRastic synapse whose strength can be flexibly adjusted 
within its range should therefore be capable of long-term depression as well as 

FIG. 7.7. Schematic illustration of a cerebellar Purkinje cell Pd (with a dendritic 
branchlet), aclimbing fiber CF (entwining the dendritic trunk), and aparallel fiber 
pf (passing through the dendritic tree), based on Palay and Chan-Palay (1974). 
Climbing fiber varicosities make numerous synaptic contacts with spines on the 
dendritic trunk. (Sejnowski, 1 9 7 7 ~ )  



long-tenn facilitation, and the condition for weakening the synapse should be as 
specific as that for strengthening it-otherwise the information stored as the 
synaptic strength is lost. 

Without proposing an all-encompassing theory for the cerebellum, the prob- 
abilistic model in the previous section can be applied to the specific problem of 
plasticity in the cerebellar cortex (Sejnowski, 1977a. 1977b). The result over- 
comes some of the shortcomings of previous predictions. If K is the strength of a 
plastic synapse, then the learning algorithm derived from the dynamic filter 
model of memory is 

where the constant y determines the rate of change of the synaptic strength, p(t) 
is the presynaptic input (a parallel fiber in the cerebellum), c( t )  is the "teaching" 
input (a climbing fiber in the cerebellum), and b(t) and S ( t )  are their average 
values. Thus the algorithm predicts that the strength of the synapse should 
increase whenever the parallel fiber and climbing fiber are activated together 
more often than by chance, decrease in strength whenever they are activated 
together less often than by chance, and maintain a constant average strength 
when the two inputs are uncorrelated. This covariance storage algorithm has two 
advantages: First, the problem of saturation from chance coincidences is over- 
come; and second, the entire dynamic range of synaptic strength is always 
available. One problem that the algorithm does not solve is deviation from the 
average strength owing to random fluctuations. However, this problem can be 
minimized by limiting the time during which a synapse is sensitive to modifica- 
tion. 

A similar algorithm was independently proposed by Leon Cooper, Fishel 
Liberman, and Erkki Oja (1979). who used it to model the acquisition and loss of 
neuron specificity in the visual cortex during development. The convergence and 
stability of a wide class of learning algorithms has been studied by 6lie 
Bienenstock (1980). 

Skeleton Filters 

The linear filter model for memory viewed as a processing unit has two types of 
terminals-inputs and outputs. Recall from memory, however, depends not only 
on sensory inputs but on expectation and context as well. How can these influ- 
ences be accounted for in the model? Adding a second input for context does not 
help: The new output is simply a linear superposition. A new type of input is 
needed, one that can change the processing of other inputs. 

The probabilistic model discussed in the previous section provides the re- 
quired flexibility. The linear filtering of the input on the second tier depends on 
the skeleton network determined by the first tier. Two types of input can there- 
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fore be distinguished: (1) inputs that affect the average membrane potentials, and 
hence by Eq. (7-10) the skeleton network for the filter; and (2) inputs that affect 
the correlations between membrane potentials. (Both types of inputs may. of 
course, be carried by a single set of input fibers.) Contextual information, repre- 
sented by the average firing rates of neurons in the filter, could completely alter 
the correlated output associations evoked by correlated inputs. Consequently, the 
probabilistic model allows many different skeleton filters to be embedded in the 
same population of neurons. For example, each different visual pattern excites a 
different subset of neurons in the visual cortex, which could in turn serve as a 
different skeleton filter for processing correlations. 

Our sensitivity to a particular sensory signal can be greatly enhanced when our 
attention is properly focused. The cue can be physical, grammatical, meaningful. 
or any other perceivable dimension. A skeleton filter with internally generated 
inputs rather than sensory inputs driving the background firing rates is a candi- 
date model for selective attention. The type of information to which the skeleton 
filter could be made sensitive depends on where the filter is placed in the process- 
ing stream. Evidence exists for filtering on all levels, from early sensory selec- 
tion to late conceptual selection (Norman, 1976). 

Items in human memory which are associated with each other can be related in 
many different ways. A table and chair can be related by color, style, function, or 
any other conceivable dimension. In a semantic network, relationships are 
graphically summarized as a set of items joined by relational arrows, as Scott 
'Fahlman discusses in chapter 5 of this book. How is the discrete representation of 
knowledge in a semantic network related to the analog representation of informa- 
tion in distributed filters? The simplest unit of knowledge in a semantic network 
is a triple of two items and a relation between them. A relation cannot bc 
included in a linear filter because, as we have seen, there is no way for a linear 
filter to account for a contingency in the association between two items. In a 
skeleton filter, however, contingency is represented by the background firing 
rates, as illustrated in Fig. 7.8. If the firing rates in an area were to represent a 
relation, then the skeleton filter could generate output associations to input items 
relative to that relation. 

The skeleton filter viewed as a processing unit has three types of terminals, 
one of which can be used to represent contextual and relational information. 
Skeleton filters could, in principle, be used selectively to store and retrieve 
associations in long-term memory, to attend sensory information, and to manipu- 
late relational knowledge. The selectivity of a skeleton filter does not depend on 
the details of the particular network model analyzed here. Any model composed 
of nonlinear threshold devices will exhibit transitions between different process- 
ing states. If the nonlinearity is strong, such as the step functions that Geoffrey 
Hinton uses in the model he discusses (Chapter 6, this volume), then the tran- 
sitions between states is sharp and the control of the "skeleton" will be "tight". 
Weaker nonlinearities, such as a linear device with a threshold, allow more 
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FIG. 7.8. (a) Example of an elementary triple from a semantic network. The 
item "Clyde" (an elephant) is linked with the item "grey" by the relation "color 
of." (b) Schematic diagram of  inputs and outputs for a skeleton filler. lnput 
correlations are transformed by the filter matrix T(t) given by Eq. (7-13). The 
filler matrix and hence the output correlations depend on the average firing rates 
R,  through the effective coupling matrix in Eq. (7-10). 

gradual transitions and "softer" control. The probabilistic model in this chapter 
starts with an arbitrary sigmoidal nonlinearity, which includes step functions and 
linear threshold devices, and derives an exactly !inear skeleton network em- 
bedded in the full nonlinear model. Thus, control of the skeleton can be "tight" 
in one area and "soft" in another, and the processing is linear in both cases. 

7.5. THEORY AND PRACTICE 

Three theoretical traditions have independently contributed to our present under- 
standing of distributed information processing. Workers in two traditions were 
inspired by distributed processing in the brain: those interested in associative 
memory concentrated on linear models (Anderson, 1970; Kohonen, 1972; 
Longuet-Higgins, 1968) while those who emphasized cooperative properties de- 
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veloped nonlinear models (Ementrout & Cowan, 1979; Julesz, 1974; Marr & 
Poggio, 1976). A third tradition, inspired by machines rather than man, deals 
with the control of complex physical systems and the communication of informa- 
tion. The probabilistic tools developed by systems engineers were applicd in  this 
chapter to a nonlinear model that previously had only been treated by determinis- 
tic techniques. A surprise occurred during the analysis of the model: If a reason- 
able assumption is made then the linear and nonlinear models become unified in a 
single probabilistic one. In addition to being theoretically attractive the unifica- 
tion has experimental implications that are directly testable. 

The primary variable in most network models is the average firing rate, which 
is known to code sensory and motor information in the central nervous system. In 
the probabilistic model the membrane potential is taken as the primary variable, 
and the average firing rate appears as a derived statistical variable. In most linear. 
network models the average firing rate of a neuron is assumed to vary linearly 
with total input, but this is only a valid approximation over a small part of a 
typical neuron's operating range, as shown in Fig. 7.3. Linearity appears in the 
probabilistic model not at the level of the average membrane potential or average 
firing rate but at the level of correlations between membrane potentials, a 
higher-order statistical variable that is just beginning to be explored experimen- 
tally. 

Correlations are signals contained in the fluctuations of the membrane poten- 
tials from their average values, a component that is usually ignored in most 

'experiments. Whether large-scale correlations exist and are related to sensory 
processing can be directly tested by intracellular recording from neurons in 
cerebral cortex. Charles Gilbert and Torsten Wiesel (I979), for example, have 
used intracellular recording in the visual cortex to identify the class of a neuron 
from its average response and to determine its morphology following injection of 

"a marker (Fig. 7.6). An ensemble of responses contains information beyond the 
average response, such as the ensemble correlation, which may also depend on the 
stimulus. An ensemble of intracellular recordings from a pair of neurons respond- 
ing to a controlled sensory stimulus could be used to determine the ensemble 
correlation between the membrane potentials and to test the key assumption that 
membrane potentials have a Gaussian distribution. These experiments are dif- 
ficult and might seem unpromising: Only in a few areas of the cortex, such as the 
primary visual cortex, is enough known about the first-order average response to 
justify looking at second-order signals. However, the importance of higher-order 
processing cannot be properly assessed until data are available from carefully 
controlled experiments. A probabilistic model may be useful in suggesting 
worthwhile measurements and in analyzing the data. 

The unification of the linear and nonlinear models by a single probabilistic 
model provides a rigorous basis for a new device, the skeleton filter, which 
combines the advantages of linear filters from systems engineering with the 
flexibility of nonlinear control. A skeleton filter is a skeleton network of neurons 



in an area that linearly filters correlations along incoming spike trains. The subset . 
of neurons in the skeleton network, and hence the filtering characteristics of the 
network, can be adjusted by changing the average firing rates of the neurons. In 
principle a skeleton filter could be used to implement selective attention, to 
provide for the selective storage and retrieval of information from associative 
memory, and to manipulate relational knowledge, which is not possible in a 
strictly linear model. 

The aim of the probabilistic model summarized in this chapter is to provide a 
bridge between neural "hardware" and behavioral "software." If the model is a 
good first approximation to information processing in the central nervous system, 
then the parallels with communications and control engineering could prove 
useful not only in interpreting experimental data but in understanding the brain's 
design principles as well. In particular, linear systems theory, which has impor- 
tant applications in signal detection and spacecraft guidance, can be considered 
the machine language for a "chip" of highly interconnected neurons in a skele- 
ton filter. Many chips, perhaps many millions, may be required for each sensory 
system and each level of cognitive processing. The "columns" (Mountcastle, 
1979) and "dendritic bundles" (Roney, Scheibel, & Shaw, 1979) that have been 
found in the cerebral cortex are candidates for such skeleton filter chips. 

The brain contains the solutions to numerous problems in control and com- 
munication that faced our distant ancestors. Despite the brain's formidable com- 
plexity, its design principles need not be complicated, just as the biochemical 
complexity of the cell does not obscure the simplicity of life's design principle, 
the replication of DNA. Future workers may uncover some of the brain's design 
principles. 
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